【分析】用系统抽样的方法是等距的.42-29=13,故样本中另外一个同学的编号为3+13=16.
例7.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.
【分析】因为1003÷50=20...3,余数为3,为使总体中的个体数能够被50整除,需要剔除3,抽样间隔即为20.
【总结】系统抽样适用于总体中个体数较大且个体差异不明显的情况;若总体不能被所需样本数整除,则需要剔除余数,重新编号,取得整数.
分层抽样
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.
分层抽样适用的条件:总体由差异明显的几部分组成.
例6.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法().
A.抽签法B.随机数表法
C.系统抽样D.分层抽样
【分析】总体由差异明显的几部分组成,故应该用分层抽样.
例7.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为().
A.70 B.20
C.48 D.2
【分析】由于学校总数为700所,所以抽样比为
【总结】当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.
总结
抽样方案设计模板3
简单随机抽样
一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。
直接抽选法。
例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。
抽签法又称“抓阄法”。
它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。
在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。
这就是抽签法,与直接抽样法类似。
另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
下面是随机数字表:
当然,随机抽样也有不足之处,它只适用于总体单位数量有限的情况,否则编号工作繁重;对于复杂的总体,样本的代表性难以保证;不能利用总体的已知信息等。
在市场调研范围有限,或调查对象情况不明,难以分类,或总体单位之间特性差异程度小时采用此法效果较好。
抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便。
如果标号的签搅拌得不均匀,会导致抽样不公平。
而随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。
2分层抽样
分层抽样又称分类抽样或类型抽样,是先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。
一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本。
分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的。
当总体是由差异明显的几部分组成时,往往选择分层抽样的方法。
其特点是将科学分组法与抽样法结合在一起,每个个体被抽到的概率都相等N/M。