圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
圆的面积教案范文4
教材分析:
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
学情分析:
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
教学目标:
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重难点:
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法和手段:
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。