订单查询
首页 办公文秘
六年级数学上册《圆的面积》教案6篇
大小:29.59KB 13页 发布时间: 2023-06-06 10:20:24 18.95k 18.93k

r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?

(预设)生:2个小正方形的面积

(预设)生:3个小正方形的面积

师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。

(预设)生:等于两个正方形的面积之和,也就是2r2,。

师:那么这个圆的面积呢?还要重叠过来吗?

师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?

(预设)生:大约是3r2

师:能确定?为什么不估2r2和4r2

(预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.

师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。

(课件出示)两个正方形的面积<圆的面积<4个正方形的面积

2r2<S圆<4r2

师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。

(平板电脑出示题目和选项:那么圆的面积与它的r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?

A:圆的面积是它的r2的3倍

B:圆的面积是它的r2的3.5倍

C:圆的面积是它的r2的π倍

D:圆的面积是它的r2存在其他的倍数关系

D:圆的面积与它的r2不存在固定的'倍数关系)

师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)

师:有30%的同学认为圆的面积是它的r2的3倍

,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!

【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2

r2与4

r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。

三、启发探究,尝试验证

(一)数格子验证

师:谁来说说你的想法?

(预设)生:可以利用数格子的方法。

(学生的课前研究单上有一个半径是3厘米的圆)

(预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。

师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?

(预设)生:有,这些不满格的要估算。

师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。

(预设)生:会,因为这样需要估算的面积就会越少,所以更准确。

(课件展示)

师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。

师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子

极限思想)

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441