解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
八年级下册数学优秀教案3
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.
重点
求根公式的推导和公式法的应用.
难点
一元二次方程求根公式的推导.
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4(2)(x-2)2=7
提问1这种解法的(理论)依据是什么?
提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)
(学生活动)用配方法解方程2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0(2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca