这些错误的发生,说明了学生对乘法结合律和乘法分配律这两条运算定律产生了混淆。这是由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生造成知觉上的错误。
四、我的思考
著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。
在教学乘法运算定律:“乘法交换律、结合律和分配律”时出现的各种问题,很多老师都是从“数”的角度来帮孩子加强理解,这对于孩子是有用处的。也有很多老师提出要加强练习,这样的做法也是有用处的。“练习不等同于重复”,练习不等于简单机械的重复操练,而是要敏锐发现学生学习的节点,分析成因,找到真正的症结所在,针对学生的学习困难,设计有价值的课堂教学。“数形结合的思想”是一种数学思想方法。通过“数形结合思想”在乘法运算定律中的教学,使复杂的问题简单化、使抽象的问题形象化、使模糊的问题明朗化,孩子们对知识本质的理解更加深入了,使他们由最初的迷茫发展至现在的茅塞顿开,达到了非常好的学习效果,提高了学习的效率。
【教学设计】
教学目标:
根据以上分析我确定了本节课的教学目标:
1.引导学生将结合律、分配律的简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。
2.借用数学模型(点子图)帮助学生区分结合律和分配律的本质特征。(结合律是拆数等分成相同的几组,所以连乘,分配律是不等分分成几个不同的块,所以乘加或者乘减。)
3.通过回顾错题的练习,让学生自觉用点子图帮助找错误原因,以提高正确率。
教学重难点:
重点:借用数学模型(电子图)帮助学生理解乘法结合律和分配律知识的本质特征,让学生能够正确区分使用这两种定律。
难点:正确认识乘法结合律和分配律的本质特征。
教学过程:
一、借助点子图帮助学生区分结合律和分配律的本质
(一)创设情境,引出点子图
1.光明学校要组织一些学生参加区运动会的入场式表演,同学们要站成这样的队形(PPT出示人站成的图形15×18),要求一共有多少人,谁会列算式?
(15×18)
2.如果用一个黑点来代表一名学生,站好的队形就成了这样的方阵(PPT出示点子图15×18)。
设计意图:创设情境,由生活中的方阵计算一共要多少名学生,转化为点子图求一共有多少个点,让学生体会数学来源于生活。
(二)展示算法多样化
1.学生四人一小组,看哪个小组能用尽量多的不同的方法来帮助巧算,并结合点子图把算式里的想法在点子图里圈一圈,一种方法用1张图,用彩笔圈点子图,圈的时候先要想好了再圈。四人一组,讨论操作。
2.汇报
(预设)15×18=15×9×2
15×18=15×6×3
15×18=15×(10+8)=15×10+15×8
15×18=15×(20-2)=15×20-15×2
15×18=5×18×3
15×18=(10+5)×18=10×18+5×18
15×18=(20-5)×18=20×18-5×18
学生分别把7种解法的点子图做个说明。
设计意图:由于本节课是在学生学习了乘法结合律和分配律之后进行的,一方面了解学生掌握知识的情况,另一方面展示算法多样化。
(三)分类,观察分析点子图及算式,找到两种定律的本质区别
1.分类
学生尝试把这些方法分分类并说一说为什么这么分?
2.找到结合律的特点:因为等分成几组,所以连乘
观察结合律的点子图分析其特点。
学生举例说明:15×18=15×2×9
15×18=15×6×3
15×18=5×18×3