学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
初二年级数学教案模板精选3
一、教学目标
1.了解二次根式的意义;
2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3.掌握二次根式的性质和,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5.通过二次根式性质和的介绍渗透对称性、规律性的数学美
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围
难点:确定二次根式中字母的取值范围
三、教学方法
启发式、讲练结合
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义
例3当字母取何值时,下列各式为二次根式:
(1)(2)(3)(4)
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式
(2)-3x≥0,x≤0,即x≤0时,是二次根式
(3),且x≠0,∴x>0,当x>0时,是二次根式
(4),即,故x-2≥0且x-2≠0,∴x>2。当x>2时,是二次根式
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零