生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多45。
师:(出示下面一组题)能说出省略号表示的意思吗?
2÷9=0.222……
5÷12=0.4166……
9÷55=0.16363……
【让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。】
3、概括。
师:象这些小数,就是我们今天要学习的“循环小数”(板书课题)。谁能说一说什么叫“循环小数”?
生:一个小数,几个数字重复出现。
生:一个小数,几个数字依次不断地重复出现。
生:一个小数,从某一位起,一个数字或几个数字依次不断地重复出现。
【注:画横线部分,是教师逐步板书内容】
师:你们认为哪些同学说的最好?最请同学们看看书上写的与×××同学刚才说的还有什么不同?
生:书上多了“小数部分”这几个字。
师:书上为什么要强调从“小数部分”的某一位起呢?
生:这就是说循环小数是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不段地重复出现。
4、判断。
师:请同学们判断下面哪几个数是循环小数?为什么?(小黑板出示)
0.999……
5.02727……
6.416416……
3.21212121
3.1415926……
0.547745……
学生判断后,教师组织讨论。
⑴师:3.21212121师循环小数吗?
生:不是。
师:小数部分的“21”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?
生:虽然“21”重复地出现了三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。
⑵师:3.1415926……是无限小数吗?
生:是。
师:是循环小数吗?为什么?
生:因为小数部分没有出现一个或几个相同的数字,所以……。
⑶师:在0.547745……这个小数中,“5”、“4”、“7”这三个数字已重复出现两次,它是不是循环小数呢?为什么?
生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。
【结合实例,帮助学生理解循环小数的意义,加深学生认识循环小数。这种抽象的文字概念,学生并不能靠读几遍就理解的,要联系实际,逐字逐句地讨论它的意义。】
㈡循环节
师:(指板)“5.333……”中不断重复出现的数字是哪一个?(3)
在“0.24545……”中依次不断出现的数字是哪几个?”(4、5)在循环小数中依次不断重复出现的数字有个名字:我们把它叫做循环节。
师:想一想,什么叫做循环节呢?请你找出以上判断题中循环小数的循环节。(教师指数,学生回答)