(1)什么叫等式?等式应具备什么性质?
(2)什么叫方程?方程的解?解方程?
(3)(投影)某数的4倍减去9等于3,列出方程,并检验x=2,x=3是不是该方程的解.
(让一名学生在黑板上板演本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)
请找出它们具有的特点?
(①只含有一个未知数;②未知数的次数都是一次)
2.在学生回答完上述问题的基础上,引出课题
我们将具备上述特点的方程叫做一元一次方程.请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念.
这时,教师还需指出:“元”是指未知数的个数,“次”是指方程中含有未知数项的最高次数.
本节课我们来学习最简单的一元一次方程的解法.(板书课题)
(二)、师生共同讨论得出最简一元一次方程的解法
例解下列方程:
分析:利用等式性质2,在方程的两边都除以未知数x的系数,将其系数化1,即可得到原方程的解.最后还需检验所得的数是否为原方程的解.
(2)(3)(4)略.
(让学生先回答本题,教师追问根据,然后,老师根据学生的回答将方程(1)的解答过程板书.方程(2)(3)(4)的解答过程请三名学生板演,师生共同讲评)
最后,教师可追问学生,方程ax=b(a≠0)的解是什么?根据是什么?
(三)、课堂练习
解下列方程:(本题的作用是进一步巩固学生对最简一元一次方程的解法的掌握,使之运用得灵活、自如.这样做也为后继课的学习做好铺垫)
(四)、师生共同小结
采用师生一问一答的方式,小结本节课所学的内容.最后教师指
出:
据是等式性质2.
2.不要把两个方程用等号连接起来.如-x=1=x=1.
3.问题:若a=0,则方程ax=b的解又是什么呢?(思考)
练习设计:
解下列方程,并检验:
思考题
解关于x的方程:
(关于x的方程,就是把方程中除x以外的字母看成已知数,解此类问题要注意已知数a,b的取值范围)
教学后记:
1.先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;
2.学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式.所以,应先集中讲解一下如何准确、快速的解最简单的一元一次方程.显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟.
3.1.2等式的性质
教学目标:1.理解等式的性质,并能正确运用等式的性质.
2.运用移项法解一元一次方程.
教学重点:等式的基本性质.
利用等式性质解方程.
教学过程:
一、创设问题情境,引入等式的基本性质
师生共同归纳得出等式的基本性质: