教学过程:
(一)、从学生原有的认知结构提出问题
1.小学时学习过工程问题,在工程问题中涉及三个量:工作量、工作效率与工作时间.它们之间存在怎样的关系?
(工作量=工作效率×工作时间,
2.一件工作,若甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少?
3.一件工作,若甲单独做a小时完成,则甲单独做1小时,完成全部工作量的多少?m小时完成全部工作量的多少?a小时完成全部工作量的多少?
4.一件工作,若甲单独做7天完成,乙单独做5天完成,甲、乙合做一天完成全部工作量的多少?甲、乙合作2天完成全部工作量的多少?甲、乙合作x天完成全部工作量的多少?
(上述问题均用投影给出,请学生回答,教师补充)
今天学习列方程解工程问题.
(二)、讲授新课
例1件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?
师生共同分析,先画示意图(剩下部分需x小时完成),后找出题中相等关系.
相等关系:
甲完成工作量+乙完成工作量=全部工作量.
解:(由学生完成)
设剩下的部分需要x小时完成,依题意,得
解这个方程,得x=6
答:剩下的部分需要6小时完成.
此时,教师应指出:工程问题除用直线型示意图外,还常用圆形示意图进行分析,整个圆面积表示全部工作1.如右图.
例2一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时后,剩下部分由甲、乙合作,问还需几小时完成?
师生共同分析:画示意图,寻找一个相等关系.
相等相等:
全部工作量=甲独做工作量+甲、乙合做工作量.
解:(让一名学生板演完成)
设甲、乙合作完成剩下部分工作量需x小时,依题意,得
解这个方程,得x=16.
答:甲、乙合作完成剩下部分的工作量还需16小时.
(三)、巩固与引申
问还需几小时才能完成全部工作?
分析本题时可提出如下问题:
1.甲、乙、丙的工作效率分别是多少?
结合学生的回答,让学生画出示意图,并列出方程.
(四)、课堂练习
1.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需18天.如果由这两个工程队从两端同时相向施工,要多少天可以铺好?
2.某工作甲单独做3小时完成,乙单独做5小时完成.现在要求两
(五)、师生共同小结
在师生共同回顾本节课所学内容的基础上,教师指出:工程问题的解题步骤为①全面审题后,画出直线型示意图或圆型示意图;②寻找全部工作量、单独完成工作量及合作完成工作量的一个相等关系式;③布列方程、解方程并经检验后书写答案.
练习设计:
1.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分可注满全池;单独开放乙管,60分可注满全池;单独开放丙管,90分可注满全池.现将三管一齐开放,多少分可注满全池?
2.某中学开展校外植树活动,让初一学生单独种植,需要7.5小时完成;让初二学生单独种植,需要5小时完成.现让初一、初二学生先一起种植1小时,再由初二学生单独完成剩余部分,共需多少小时完成?