教学过程
一、引入新课
1.提出问题:
(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?
(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?
学生活动:独立思考,小组交流,得出结论:都是90°.
二、新授
1.余角与补角.
教师活动:指导学生阅读课本第128页有关内容,并讲解余角与补角的定义.
注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).
2.巩固反思.
(1)填空:
①47°18′的余角是______,补角是_______.
②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.
(2)已知一个角是它补角的3倍,求这个角.
注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.
(3)课本第129页练习.
3.余角与补角的性质.
(1)提出问题:
观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?
学生活动:观察图形,小组交流观察:∠1=∠3,∠1+∠2=180°,∠3+∠4=180°.
学生活动:观察思考后得出∠2=∠4.
(2)说明理由:
注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由
如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
教师活动:指导学生分析题意,并写出说理过程,归纳性质.
板书:等角的补角相等.等角的余角相等.
三、巩固练习
1.如右图,∠EDC=∠CDF=90°,∠1=∠2.
(1)图中哪些角互为余角?哪些角互为补角?
(2)∠ADC与∠BDC有什么关系?为什么?
(3)∠ADF与∠BDE有什么关系?为什么?
2.认识方位角.
如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.
教师活动:(1),讲解方位角和表示方位的射线,在学生完成题中的问题后操作多媒体演示画图过程.
注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.
学生活动:在教师指导下画出问题中的每一条射线.
3.知识拓展
提出问题:
小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)