(4);(5);(6).
[活动5]课堂小结
通过本节的学习,你最开心的是解决了些什么问题,又学到了什么知识?
教学反思
前面已经学习了整式的基本概念——单项式和多项式,以及系数次数项数等相关概念,而本节课我又以现实的教室的物品乱放为切入点,让学生整理,应该如何下手?是一类的就要放在一起呀,所以很自然的引入数学中的同类项,整式的加减的实质就是去括号和合并同类项,而合并同类项实质上是乘法分配律的逆用,引导学生把本节课所学内容和前面所学内容结合起来,说明数学的知识是息息相关的,并不是独立存在的.所以本节课我认为上的还是很成功的,以后要继续努力了.
2.2整式的加减(2)
教学目标
1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简;
2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
教学过程
一、创设情境,引入新课
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
【设计意图】教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
【设计意图】鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
注意:去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、典型例题
例1化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
【设计意图】讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
【设计意图】
根据船顺水航行的速度=船在静水中的速度+水流速度,