(2)-7和7是相反数(∨)
(3)-a的相反数是a,它们互为相反数(∨)
(4)符号不同的两个数互为相反数(×)
2.分别写出下列各数的相反数,并把它们在数轴上表示出来.
1,-2,0,4.5,-2.5,3
【答案】相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略.
3.若一个数的相反数不是正数,则这个数一定是(B)
A.正数B.正数或0 C.负数D.负数或0
4.一个数比它的相反数小,这个数是(B)
A.正数B.负数C.非负数D.非正数
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是±.
6.比-6的相反数大7的数是13.
提升能力
7.若a与a-2互为相反数,则a的相反数是–1.
8.(1)-(-8)的相反数是–8,
(2)+(-6)是6的相反数.
(3)1-a的相反数是a-1.
(4)若-x=9,则x=-9.
9.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示,并将这6个数用“<”连接起来.
【答案】-3<-n 开放探究 10.如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数. 11.试讨论-a的正负. 【答案】当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0. 12.新中考题 (2004·河南)-的相反数是(A) A.B.-C.D.- 教学反思: 这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。 1.2.4绝对值(第一课时) 教学目标 1.知识与技能 ①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值. ②通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.过程与方法 经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力. 3.情感、态度与价值观 ①通过解释绝对值的几何意义,渗透数形结合的思想. ②体验运用直观知识解决数学问题的成功. 教学重点难点