对以下两种情形,你能表示吗?
(5)第一次向西走了20米,第二次向东走了20米,那这位同学位于原位置的什么地方?
这位同学回到了原位置.即:-(20)+(+20)=0.
(6)如果第一次向西走了20米,第二次没有走,那如何呢?
-20+0=-20
思考根据以上6个算式,你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?
学生活动小组讨论、试看分类、归纳
观察(1)式,两个加数都为正,和的符号也是正,和的绝对值正好是两个加数绝对值的和.
观察(2)式,两个加数都为负,和的符号也是负,和的绝对值是两个加数绝对值的和.
由(1)(2)归纳:同号两数相加,取相同的符号,并把绝对值相加.
如:(-7)+(-8)=-15,16+17=+33,(-4)+(-9)=-13
观察(3)式、(4)式可见:两个加数的符号不同,和的符号有的是“+”号,有的是“-”号,为了更清楚总结规律.可引导学生再举几个类似的例子,从而可总结得到:
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
观察(5)可知:互为相反的两个数和为0.
观察(6)可知:一个数和零相加,仍然得这个数.
【总结】有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加.
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数.
(三)应用迁移,巩固提高
例1计算
(1)(-4)+(-6)=-10
(2)(+15)+(-17)=-2
(3)(-39)+(-21)=-60
(4)(-6)+│-10│+(-4)=0
(5)(-37)+22=-15
(6)-3+(3)=0
例2某足球队在一场比赛中上半场负5球,下半场胜4球,那么全场比赛该队净胜-1球.
例3绝对值小于2005的所有整数和为0.
例4一个数是11,另一个数比11的相反数大2,那么这两个数的和为(C)
A.24 B.-24 C.2 D.-2
例5下面结论正确的有(B)
①两个有理数相加,和一定大于每一个加数.
②一个正数与一个负数相加得正数.
③两个负数和的绝对值一定等于它们绝对值的和.
④两个正数相加,和为正数.
⑤两个负数相加,绝对值相减.
⑥正数加负数,其和一定等于0.
A.0个B.1个C.2个D.3个
例6根据有理数加法法则,分别根据下列条件,利用│a│与│b│表示a与b的和: