(二)合作交流,解读探究
体验1.自己任举两个数(至少有一种是负数),分别填入下列□和○中,并比较它们的运算结果,你发现了什么?
□+○和○+□
发现:对任选择的数,都有□+○=○+□,即小学里学过的加法交换律在有理数范围内仍是成立的.
体验2.任选三个有理数(至少有一个是负数),分别填入下列□,○,◇内,并比较它们的运算结果.
(□+○)+◇和□+(○+◇)
发现都有(□+○)+◇=□+(○+◇),这就是说,小学的加法结合律,在有理数范围内都是成立的.
小结有理数的加法仍满足交换律和结合律.
加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)
(三)应用过移,巩固提高
例1说出下列每一步运算的依据
(-0.125)+(+5)+(-7)+(+)+(+2)
=(-0.125)+(+)+(+5)+(+2)+(-7)(加法交换律)
=[(-0.125)+(+)]+[(+5)+(+2)]+(-7)(加法结合律)
=0+(+7)+(-7)(有理数的加法法则)
=0(有理数的加法法则)
例2利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)
【答案】(1)0(2)-6.7(3)-1002
例3某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)
+15,+14,-3,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18)
=[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]
=0
(2)(│+15│+│+14│+│-3│+│-11│+│+10│+│-12│+│4│+│-15│+│16│+│-18│)·a
=118a
【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.
(2)共耗油118a公升.
例4若│2x-3│与│y+3│互为相反数,求x+y的相反数.
【提示】两个非负数互为相反数,只有都为0.
解:根据题意,有2x-3=0,y+3=0
则x=,y=-3
x+y=+(-3)=-.
所以x+y的相反数是.
备选例题