二轮复习要注意以下几个方面的问题:
一、构建知识网络,高考试题的设计,重视数学知识的综合和知识的内在联系,尤其重视在知识网络的交会点设计试题。而一轮复习结束后,知识点在我们的意识形态中还是孤立的,二轮复习的过程,是对数学基础知识和基本方法不断深化的过程,要从本质上认识和理解数学知识之间的联系,从而加以分类、归纳、综合,形成一个条理化、排列有序、知识之间关系清晰的知识结构系统。这样在解题时,就可根据题目提供的信息,提取相关的知识点,进行有机组合,探索解题的思路和方法。如函数、导数、方程和不等式以及数列在解决问题时经常相互转化;再如解析几何中曲线与方程和代数中的函数与图像之间的联系;解析几何与向量,解析几何与导数等。因此,只有搞清楚知识之间的内在联系,形成知识结构和网络,在解题时才能从不同角度去分析解决,才能对知识融会贯通,运用自如。要求师学生把握高中数学“七大块知识、四大数学思想”。
(1)函数与导数(及其应用);(2)不等式(解法、证明及应用,这部分不会单独命题,常以工具形式出现在问题中如求范围,比较大小等);(3)数列(及其应用);(4)三角函数(图象、性质及变换);(5)直线与平面及简单几何体(空间三种角、七种距离(点面、异面直线之间距离为常考)、面积与体积的计算);(6)直线与圆锥曲线;(7)概率与统计(理科中期望与方差及正态分布估计)。
要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。要在老师的引导下,对下列主要专题进行复习与训练,巩固并提高。
首先,先对选择题和填空题常用的解题方法和一些解题技巧进行复习,以便学生在后面的复习中进行应用,使之在做这类题时达到熟练、快捷、准确。
(一)函数与不等式是重点。在代数中,以函数为主干,不等式与函数的综合是热点。
(1)函数的性质,如单调性、奇偶性、周期性、对称性等,多以具体函数及图象的几何直观展开,要注重考查抽象函数的问题,解答题重点考察导数的应用,特别是对数函数近来出现的频率很高,在复习中要隐去足够的重视,同时也要关注指数函数和三角函数的相关题型。
(2)一元二次函数,则是重中之重,函数值域(最值),以及转化为二次函数的值域,特别是含参变量的二次函数值域的研讨为重点;方法以突出配方法、换元法和基本不等式法为重点,二次不等式解的讨论,二次曲线交点问题等都与此相关。
(3)对于不等式证明,与函数联系的、与数列综合的是重点,在掌握比较法和基本不等式法的基础上,近两年不等式在导数的综合题中有所加强,即借助于函数的单调性和最值来证明不等式,掌握几种简单的放和缩的'技巧是必要的。
(二)数列,以递推关系式为条件考查数列的通项、求和、应用与极限等为重点。应突出基本数列的思想和转换与化归的方法,重点是依据递推关系式研究数列的题型,注重归纳解题方法和手段,注意变式教学,即变换条件引导培养的分析问题解决问题的能力。
(三)三角函数的考查,高考考察重点是三角函数的图像和性质,在三角形中三角函数问题,考题多为解答题中第一题位置,属于中档容易题,训练中重视研究函数性质的题目;小题中在 “求值”,抓好基本公式的熟练运用,以及二划一公式的应用,落实三角函数的性质,解三角形的问题。
(四)概率与统计,训练题型、方法、难度等,以达到高考要求,注重利用近两三年的高考试题以及最新的模拟试题中出现的新颖的题目,要重视与实际应用问题相结合。
(五)从全国考试大纲看,立体几何应当“两条腿走路”:既能用传统的合情推理,也能用向量法求解,但我们主要使用以传统几何法为主进行复习。(1)突出“空间”、“立体”,即把线线、线面、面面位置关系的考查置于某几何体中,棱柱以三棱柱、正方体为重点,棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体应予以重视。空间直线与平面的位置关系以判断和证明垂直为重点,重视三垂线定理及逆定理的灵活运用, (2)空间角以二面角为重点,熟悉三种找二面角的常用方法。空间距离以点面距、线面距为重点,等面积或等体积法是最常用的。计算面积和体积,则以解答题居多,求法灵活,思路宽广。
(六)解析几何以基本性质、基本运算为目标。客观题照顾面,解答题较综合,突出直线和圆锥曲线的交点、弦长、轨迹等,要注重与函数、数列、三角等内容的联系。
二.把握四大数学思想方法
明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想渗透到问题中去思考与讲评。
三.提高模拟练习效果 ,二轮复习中不论课堂上还是作业或是周末,都要进行模拟练习,模拟练习效果直接关系到最后的成绩。
1、明确模拟练习的目的。二轮复习中老师将有计划地从知识、方法、策略上进行系统的训练和检测,借以强化重点知识和方法,考生则一要检测知识的全面性,方法的熟练性和运算的准确性,发现自己的某些不足或空白,以求复习时有的放矢;二要在平时考试中练就考试技能技巧,学会合理安排时间,达到既快又对;三要提高应试的心理素质,能够在任何状况下都心态平和,保证大脑对试题的兴奋度。
2、严格有规律地进行限时训练。二轮复习时间紧,任务重,学生要进行限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
二轮复习共设八个专题,其中每周穿插一套综合训练题,来巩固强化升华前面的复习成果,提高和训练学生的解题能力,在每个专题中,三类题目都要有,既注重基础知识、基本题型的巩固和提高,又要结合高考的各种信息及各地的模拟试题,进行选编专题学案。
高考数学复习是一项系统工程,如何进行有效的复习,针对我校的实际情况,下面谈谈我们的做法。
一。夯实解题基本功
高考数学题很多源于课本,因此要依据教学大纲和考试大纲,强化基础知识的落实和巩固。注重对课本例题、习题的演变训练,将课本内容延伸、提高。数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。
二。不依靠题海取胜,注重题目的质量和处理水平
由于复习的时间紧任务重,要避免题海战术,教学要精心备课,选择典型例题,使学生少走弯路。对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,应足够重视,陈题新解、熟题重温可使学生获得新的感受和乐趣。要特别重视讲评试卷的方法和技巧。
三。分层辅导,强化训练
1.对于优生(90分以上),我们组建了培优班,由6个文科班中的数学前40-50名同学组成,培优的目的主要是能使这些优秀的学生在高考中数学成绩稳定在115分左右,部分学生能超过125分。培优是对重点知识内容深化,是使他们既能熟练掌握,又能灵活应用,并在解题过程中,不断强化、固化。同时还要培养他们的应试技巧。
2.对于中等生(65-90分,比例较大),我们组建了两个提高班。主要针对中上等学生和只有数学单科较弱的中等学生群体,帮助他们树立学习数学的兴趣并改变数学拖后腿的现象。中等生的提高意味着上线率的提高,对此我们十分的重视。提高班的主要目的.是加强对“基本知识、基本技能、基本方法”能力培养,以强化解题方法、解题思路为主,讲解选择题、填空题、解答题中的基础题得分技巧。对重点、难点、疑点、误点、弱点、考点进行强化训练。
3.对于学数学有困难的学生(主要集中在2,5,6班,数学成绩在30分以下),我们本着“不抛弃,不放弃”的原则,以课本为主,强化数学知识的概念、定理、公式、法则,加以理解,要求记忆、默写,并会简单应用。6个文科班中,有的班级(3、4班),每天晚修或下午自习课,抽出半小时的时间专门学数学,数学课代表或数学老师组织学生默写数学公式、法则,或布置有针对性的习题;有的班级在课室专门搞了“数学角”,每天提供数学公式,概念及解题技巧,强迫学生学数学。几个周下来,很有收获。
除此之外,我们每周有周测,出两套难度不同的试卷(A、B卷),对于数学成绩差一些的学生,我们给他们提供的是一套以基础知识为主的测试卷(A卷),80分为满分,48分合格,效果非常好,这部分学生学数学的信心也大大提高了。按照教育局最新方案,我们告诉数学差的学生,高考数学成绩只要达40—50分,那么总成绩一定可以达专B线的(若是高职,必是专A),用以提高每个学生学数学的积极性。
四。总体复习安排:
1。7月14日-2月上旬,完成第一轮复习,按章节系统复习,以夯实基础知识,构建知识网络,熟悉高考考点为目标。我们以《全品高考数学复习方案》为主要复习资料,其最大特点就是“听课手册+活页的作业手册”,非常适合学生练习和测验。另外,我们普通班老师还用由广州市教育局教学研究室编,华南理工大学出版社出版的“20__高考备考指南 数学(文科)系统复习用书”,针对数学基础薄弱的学生,进行基础训练。学生普遍感觉这本书的题目比较温和,基础性强,而不是面目可憎,无从下手。
2.每周一考:每周三下午第八节课是我们文科数学周考时间,以主干知识为重点,注重选、填题的训练,特别是速度和解题技巧。因此,每次测试题目选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。
3.2月中下旬-3月中旬(广一模之前),把复习过的知识重新“回炉”进行全面、滚动复习,提升学生的综合运用能力。注重对小题型(选择题、填空题)的强化。在这一阶段,锻炼学生的综合能力与应试技巧,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。
4.4月上旬-高考,最后综合训练,穿插专题、专项复习,查漏补缺、纠错,高考全真模拟,提高学生适应高考的能力。综合模拟在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。
该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的生成过程。发放一份我们备课组自己编写的“高考数学知识点考前再回顾”。