订单查询
首页 其他文档
小学六年级数学应用题难题
大小:24.49KB 8页 发布时间: 2023-02-15 10:15:43 4.92k 4.39k

【答案】60060

【解】2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果这个数不是2,3,4,5,6,7的倍数,那么这个数也不是4,6,8,10,12,14的倍数,错误的陈述不是连续的,与题意不符。所以这个数是2,3,4,5,6,7的倍数。由此推知,这个数也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍数。在剩下的8,9,11,13中,只有8和9是连续的,所以这个数不是8和9的倍数。2,3,4,5,6,7,10,11,12,,13,14,15的最小公倍数是22×3×5×7×11×13=60060。

16.小王和小李平时酷爱打牌,而且推理能力都很强。一天,他们和华教授围着桌子打牌,华教授给他们出了道推理题。华教授从桌子上抽取了如下18张扑克牌:

红桃A,Q,4黑桃J,8,4,2,7,3,5

草花K,Q,9,4,6,lO方块A,9

华教授从这18张牌中挑出一张牌来,并把这张牌的点数告诉小王,把这张牌的花色告诉小李。然后,华教授问小王和小李,“你们能从已知的点数或花色中推断出这张牌是什么牌吗?

小王:“我不知道这张牌。”

小李:“我知道你不知道这张牌。”

小王:“现在我知道这张牌了。”

小李:“我也知道了。”

请问:这张牌是什么牌?

【答案】方块9。

【解】小王知道这张牌的点数,小王说:“我不知道这张牌”,说明这张牌的点数只能是A,Q,4,9中的一个,因为其它的点数都只有一张牌。

如果这张牌的点数不是A,Q,4,9,那么小王就知道这张牌了,因为A,Q,4,9以外的点数全部在黑桃与草花中,如果这张牌是黑桃或草花,小王就有可能知道这张牌,所以小李说:“我知道你不知道这张牌”,说明这张牌的花色是红桃或方块。

现在的问题集中在红桃和方块的5张牌上。

因为小王知道这张牌的点数,小王说:“现在我知道这张牌了”,说明这张牌的点数不是A,否则小王还是判断不出是红桃A还是方块A。

因为小李知道这张牌的花色,小李说:“我也知道了”,说明这张牌是方块9。否则,花色是红桃的话,小李判断不出是红桃Q还是红桃4。

【提示】在逻辑推理中,要注意一个命题真时指向一个结论,而其逆命题也是明确的结论。

10.从1到100的自然数中,每次取出2个数,要使它们的和大于100,则共有种取法.

【答案】2500

【解】设选有a、b两个数,且a<b,

当a为1时,b只能为100,1种取法;

当a为2时,b可以为99、100,2种取法;

当a为3时,b可以为98、99、100,3种取法;

当a为4时,b可以为97、98、99、100,4种取法;

当a为5时,b可以为96、97、98、99、100,5种取法;

………………

当a为50时,b可以为51、52、53、…、99、100,50种取法;

当a为51时,b可以为52、53、…、99、100,49种取法;

当a为52时,b可以为53、…、99、100,48种取法;

………………

当a为99时,b可以为100,1种取法.

所以共有1+2+3+4+5+…+49+50+49+48+…+2+1=502=2500种取法.

【拓展】从1-100中,取两个不同的数,使其和是9的倍数,有多少种不同的取法?

【解】从除以9的余数考虑,可知两个不同的数除以9的余数之和为9。通过计算,易知除以9余1的有12种,余数为2-8的为11种,余数为0的有11种,但其中有11个不满足题意:如9+9、18+18……,要减掉11。而余数为1的是12种,多了11种。这样,可以看成,1-100种,每个数都对应11种情况。

11×100÷2=550种。除以2是因为1+8和8+1是相同的情况。

14.已知三位数的各位数字之积等于10,则这样的三位数的个数是个.

【答案】6

【解】因为10=2×5,所以这些三位数只能由1、2、5组成,于是共有=6个.

12.下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那么A2与A5的和是多少?

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441