订单查询
首页 其他文档
人教版七年级下数学知识点归纳总结
大小:24KB 10页 发布时间: 2023-02-17 09:52:11 15.38k 14.62k

②点到轴及原点的距离:

点到x轴的距离为|y|;

点到y轴的距离为|x|;

点到原点的距离为x的平方加y的平方再开根号;

③各象限内和坐标轴上的点和坐标的规律:

第一象限:(+,+)

第二象限:(-,+)

第三象限:(-,-)

第四象限:(+,-)。

x轴正方向:(+,0)

x轴负方向:(-,0)

y轴正方向:(0,+)

y轴负方向:(0,-)。

坐标原点:(0,0)

x轴上的点纵坐标为0,y轴横坐标为0。

二、坐标方法的简单应用(一)用坐标表示地理位置的过程:

1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。

2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。

3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

(二)用坐标表示平移

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。

第八章二元一次方程组

8.1二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解

8.2消元

二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.

1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。

第九章不等式与不等式组

9.1不等式一、不等式及其解集

1.不等式:用不等号(包括:>、<、≠)表示大小关系的式子。

2.不等式的解:使不等式成立的未知数的值,叫不等式的解。

3.不等式的解集:使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。

不等式的基本性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性).

性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性).

性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。

如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac

性质4:如果a>b,c>d,那么a+c>b+d.(不等式的加法法则)

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441