68.求从1~2000的自然数中,所有偶数之和与所有奇数之和的差。
【解析】给所有的奇数和偶数配对,(1、2)、(3、4)、.......(1999、2000),容易发现一共有2000÷2=1000对,而每对中的偶数与奇数的差为1,所以所有偶数之和与所有奇数之和的差就是1000
69.下面的算式是按一定的规律排列的,那么,第100个算式的得数是多少?
4+2,5+8,6+14,7+20……
【解析】第1个算式的第一个加数为4,第2个算式的第一个加数为5,第3个算式的第一个加数为6,以此类推,
第100个算式的第一个加数为103;第1个算式的第二个加数为2,第2个算式的第二个加数为8,第3个算式的第二个加数为14,以此类推,第100个算式的第二个加数为6×(100-1)+2=596;
所以第100个算式的得数为103×596=61388
70.建筑工地有一批砖,最上层两块砖,第2层6块砖,第3层10块砖……(如图),依次每层比其上一层多4块,已知最下层有2106块砖,这堆砖共有多少块?
【解析】2+6+10+14+18+.....+2106,观察这个数列,容易发现为首项为2,公差为4,末项为2106的等差数列。
首先要计算此数列的项数,依次是4×0+2、4×1+2、4×2+2、....4×526+2,所以一共有527项。
再根据等差数列求和公式得:
原式
=[n(A1+An)]/2=[527×(2+2106)]/2=555458
71.把100根小棒分成10堆,每堆小棒根数都是单数,且一堆比一堆少2根,应如何分?
【解析】等差数列,Sn=nA1+[n(n-1)d]/2,所以100=10A1+10×9×2/2,解得A1=1
所以分成的10堆数量依次是1、3、5、7、9、11、13、15、17、19
72.100~200之间不是3的倍数的数之和是多少?
【解析】100~200之间数之和为[101×(100+200)]/2=15150
而100~200之间是3的倍数的数依次是102、105、108、.....195、198,它们的和为[33×(102+198)]/2=4950
所以100~200之间不是3的倍数的数之和是15150-4950=10200
73.11~18是8个自然数的和再加上1992后所得的值恰好等于另外8个连续数的和,这另外8个连续自然数中的最小数是多少?
【解析】分析1992,把它拆分成8个相等自然数的和,即1992÷8=249,
所以这另外8个连续自然数中的最小数是249+11=260
74.1+2+3+……+100=
【解析】原式=(100+1)×50=5050
75.从1到300一共用了()个0。
【解析】一位数没有用到0,两位数中有10、20、30、.....90,一共用了9个0;
三位数中包括:100、101、.....109有11个,110、120、130、....190有9个,200、201、.....209有11个,
210、220、230、....290、300有11个,所以一共有11+9+11+11=42
所以一共用了9+42=51个
76.甲仓库存粮108吨,乙仓库存粮140吨,要使甲仓库存粮数是乙仓库的3倍,必须从乙仓库运出()吨放入甲仓库。
【解析】甲仓库和乙仓库的总重量为108+140=248吨,当甲仓库存粮数是乙仓库的3倍时,乙仓库的存粮为248÷(1+3)=62吨,所以运给甲的重量为140-62=78吨
77.立新小学举行运动会,参加赛跑的人数是参加跳远的4倍,比参加跳远的多66人,参加赛跑的有()人,参加跳远的有()人。
【解析】参加赛跑的人数是参加跳远的4倍,也就是比参加跳远的多参加跳远人数的3倍,又因为比参加跳远的多66人,所以参加跳远人数为66÷3=22人,参加赛跑的有22+66=88人。
78.鸡兔同笼,共100个头,320只脚,那么,鸡有()只,兔有()只。
【解析】鸡兔同笼问题,假设全部是鸡,那么就有脚100×2=200只,相比320只还少了120只,所以兔子的头数为120÷(4-2)=60只,所以鸡的头数为100-60=40只。
79.小明今年2岁,妈妈26岁,那么,()年后妈妈的年龄是小明的3倍。
【解析】妈妈与小明的年龄差为26-2=24岁,当妈妈的年龄是小明的3倍时,此时的年龄差为小明年龄的2倍,即小明年龄为24÷2=12岁,也就是12-2=10年后。
80.警方查询了三个可疑的人,这三个人中有一个是小偷,讲的全是假话。有一个人是从犯,说起话来真真假假,还有一个人是好人,句句话都是真的,查询中问及三个人的职业,回答是:
甲:我是推销员,乙是司机,丙是美工设计师。