订单查询
首页 其他文档
2023小升初奥数重点题型及详细讲解
大小:52.18KB 24页 发布时间: 2023-03-03 14:19:33 13.23k 11.64k

对于B/(A+B)取最小时,(A+B)/B取最大,

问题转化为求(A+B)/B的最大值。

(A+B)/B=1+A/B,最大的可能性是A/B=99/1

(A+B)/B=100

(A-B)/(A+B)的最大值是:98/100

答案为6.375或6.4375

因为A/2+B/4+C/16=8A+4B+C/16≈6.4,

所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

当是102时,102/16=6.375

当是103时,103/16=6.4375

4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.

答案为476

解:设原数个位为a,则十位为a+1,百位为16-2a

根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198

解得a=6,则a+1=716-2a=4

答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.

答案为24

解:设该两位数为a,则该三位数为300+a

7a+24=300+a

a=24

答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?

答案为121

解:设原两位数为10a+b,则新两位数为10b+a

它们的和就是10a+b+10b+a=11(a+b)

因为这个和是一个平方数,可以确定a+b=11

因此这个和就是11×11=121

答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.

答案为85714

解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x

根据题意得,(200000+x)×3=10x+2

解得x=85714

所以原数就是857142

答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.

答案为3963

解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441