【题-010解答】队形
当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数
169-15=154人
【题-011解答】计算答案:
用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:
a1+a3+a5-a2-a4-a6=11k(*)
也就是:
a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)
15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)
由此看出k只能是奇数
由(*)式看出,0≤k<2,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.
但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.
对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.
根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.
【题-012解答】分数:(中等难度)
除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).
为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)=4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.
如果得60分至79分的有60人,共占分数3×(60+61+…+79)=4170,比这些人至多得分7997-4005=3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.
【题-013解答】四位数:(中等难度)四位数答案:
因为该数加1之后是15的倍数,也是5的倍数,所以d=4或d=9.
因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.
这表明m=27、37、47;32、42、52.(因为38m的尾数为6)
又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k.
由于38m的个位数是6,所以5|(38m+4),
因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.
所求的四位数是1409,1979.
【题-014解答】行程答案:
汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4
得出:汽车速度=自行车速度的2倍.汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).
【题-015解答】跑步:(中等难度)
根据"马跑4步的距离狗跑7步",可以设马每步长为7x米,则狗每步长为4x米。
根据"狗跑5步的时间马跑3步",可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20x米。
可以得出马与狗的速度比是21x:20x=21:20
根据"现在狗已跑出30米",可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米
【题-016解答】排队:(中等难度)
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种
【题-017解答】分数方程:(中等难度)