下面是小编精心整理的小升初奥数题必考题及答案解析,欢迎阅读与收藏,供大家参考。
小升初奥数题必考题及答案解析
龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停地跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。那么先到达终点比后到达终点的快多少分钟?
答案与解析:
乌龟用时:5.2÷3×60=104(分钟);兔子总共跑了:5.2÷20×60=15.6(分钟)。而我们有:15.6=1+2+3+4+5+0.6按照题目条件,从上式中我们可以知道兔子一共休息了5次,共15×5=75(分钟)。所以兔子共用时:15.6+75=90.6(分钟)。兔子先到达终点,比后到达终点的乌龟快:104-90.6=13.4(分钟)。
【题目】
老师从写有1~13的13张卡片中抽出9张,分别贴在9位同学的额头上。大家能看到其他8人的数但看不到自己的数。(9位同学都诚实而且聪明,且卡片6、9不能颠倒)老师问:现在知道自己的数的约数个数的同学请举手。有两人举手。手放下之后,有三个人有如下的对话:甲:我知道我是多少了。乙:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。丙:我的数比乙的小2,比甲的大1。那么,没有被抽出的四张牌上数的和是?
【答案】
首先,列举1~13所有数约数个数。每个人只能看到另外8个人头上的数,而要看到8个数就确定自己的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。所以没抽出的四张牌必定约数个数为2个,都是质数。也就是举手的两名同学头上的数。甲说:我知道我是多少了。所以甲头上的数不是质数。乙说:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。也就是说乙现在还不确定自己的数是多少,那么只可能是约数个数2个的,也就是说他头上的数是质数,他又知道奇偶性,所以他看到了其他人头上有2,而乙的数就是一个奇数的质数。丙说:我的数比乙的小2,比甲的大1。乙是奇数,丙也是奇数,并且他知道自己的数所以肯定他不是质数,那么丙只能是1或9,而丙还要比甲大1,所以丙只能是9,甲是8,乙是11。那么,质数当中出现了2和11,没抽出的四张牌自然是3、5、7、13和为28。
1、李小和张强付同样多的钱买了同一种铅笔,李小要了13支,张强要了7支,李小又给张强0.6元钱,每支铅笔多少钱?
考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:根据两人付同样多的钱买同一种铅笔和李小要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李小要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱,据此解答。
解答:解:0.6÷[13(13+7)÷2],
=0.6÷[1320÷2],
=0.6÷3,
=0.2(元);
答:每支铅笔0.2元。
点评:本题的关键是求出李小给张强0.6元钱,是几支铅笔的价钱。
2、学校组织两个课外兴趣小组去郊外活动,第一小组每小时走4.5千米,第二小组每小时行3.5千米,两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组,多长时间能追上第二小组?
考点:追及问题。
专题:行程问题。
分析:第一小组停下来参观果园时间,第二小组多行了[3.5(4.53.5)]千米,也就是第一组要追赶的路程,又知第一组每小时比第二组快(4.53.5)千米,由此便可求出追赶的时间。
解答:解:第一组追赶第二组的路程:
3.5(4.53.5),
=3.51,
=2.5(千米);
第一组追赶第二组所用时间:
2.5÷(4.53.5),
=2.5÷1,
=2.5(小时);
答:第一组2.5小时能追上第二小组。
点评:此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可
1、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
2、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
3、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
参考答案:
1、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)