这时,甲有:(5760+120×2)÷2=3000(元)
甲原来有:3000÷(1-40%)=5000(元),
乙存款:9600-5000=4600(元)
奥数题3
某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完并获利40元。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少?
答案:
(100+40)/2.8=50(本)
原进价:
100/50=2(元),
150/(2+0.5)=60(本),
60×80%=48(本)
48×2.8+2.8×0.5×(60-48)-150=1.2
答:盈利1.2元。
奥数题4
李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
答案:
设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x
则0.1X=2aX a=0.05
答:每千克水果降价0.05元
奥数题5
有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:
首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
奥数题6
能否把8个数1、2、…、8排列在正八边形的各个顶点上,每个顶点放一个数,使得对于任意位于三个相连顶点上的各数之和:(I)大于11;(II)大于13.
【答案与解析】
(I)能够做到,顺时针依次填写1、8、3、6、4、2、7、5即为一例。
(II)不能做到。假设存在这样的排列,那么一共会有8个和,每个和都至少是14,所以这8个和的总和至少是112。而同时,这8个和的总和应该是把每个数字都用了3遍,所以总和应该等于108,出现矛盾.因此无法按照要求填数。
奥数题7
足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,
收入为15×(1+1/5)=18元,
则降价后每张票价为18÷2=9元,
每张票降价15-9=6元。即:
15-15×(1+1/5)÷2=6(元)
答:每张票降价6元。