4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。a+b=b+a
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。a+b+c=(a+b)+c=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。a×b=b×a
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。a×b×c=(a×b)×c=a×(b×c)
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个
积相加,结果不变。(a+b)×c=a×c+b×c
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。※如果有余数,被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数会扩大(或缩小)相同的倍数。
0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8.方程式:含有未知数的等式叫方程式。9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有x的算式并计算。10.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比
较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
五、特殊问题
和差问题
(和-差)÷2=小数
和倍问题
和÷(倍数+1)=小数
小数×倍数=大数
(或:和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或:小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么: