整除与除尽
整除:甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。
除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。
整除可以说是除尽,但除尽就不能说一定叫整除。
例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。
又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a+b=b+a
3、乘法交换律:a×b=b×a
4、乘法结合律:a×b×c=a×(b×c)
5、乘法分配律:a×b+a×c=a×b+c
6、除法的性质:a÷b÷c=a÷(b×c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数
十三、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数式:用字母表示的式子叫做代数式。如:3x=ab+c代数就是用字母代替数。
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的除法则:分数除以一个数(0除外),等于乘这个数的倒数。一个数除以分数,等于这个数乘以分数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
分数没有基本单位:不同的分数,有不同的分数单位。没有一个共同的标准量,就没有基本单位。
分数的通分、约分
通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。
约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。
分数单位
分子为1,分母不为零的真分数,就叫这个分数的分数单位。例如:??的分数单位是??,它有7个这样的分数单位。又如??的分数单位是??,它有13个这样的分数单位(将带分数化成假分数)。
分数化有限小数的判断方法
一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。例如:??、??、??等都能化成有限小
数。??、??、??都不能化成有限小数。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。