367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。
这说明至少有2个学生的生日是同一天的。
五、幻方问题
【数量关系】每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。
三级幻方的幻和=45÷3=15
五级幻方的幻和=325÷5=65
【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。
六、构图布数问题
【数量关系】根据不同题目的要求而定。
【解题思路和方法】通常多从三角形、正方形、圆形和五角星等图形方面考虑。
按照题意来构图布数,符合题目所给的条件。
例题:十棵树苗子,要栽五行子,每行四棵子,请你想法子。
解符合题目要求的图形应是一个五角星。
4×5÷2=10
因为五角星的5条边交叉重复,应减去一半。
七、溶液浓度问题
【数量关系】溶液=溶剂+溶质
浓度=溶质÷溶液×100%
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例题:爷爷有16%的糖水50克
(1)要把它稀释成10%的糖水,需加水多少克?
(2)若要把它变成30%的糖水,需加糖多少克?
解:(1)需要加水多少克?50×16%÷10%-50=30(克)
(2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克)
答:(1)需要加水30克
(2)需要加糖10克。
八、存款利率问题
【数量关系】年(月)利率=利息÷本金÷存款年(月)数×100%
利息=本金×存款年(月)数×年(月)利率
本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数]
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例题:李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。
解因为存款期内的总利息是(1488-1200)元,
所以总利率为(1488-1200)÷1200又因为已知月利率,
所以存款月数为(1488-1200)÷1200÷0.8%=30(月)
答:李大强的存款期是30月即两年半。
九、商品利润问题(又叫盈亏问题)
【数量关系】利润=售价-进货价
利润率=(售价-进货价)÷进货价×100%
售价=进货价×(1+利润率)