∵A′A⊥平面ABCD,BD平面ABCD,
A′A⊥BD.
又AC∩A′A=A,BD⊥平面A′AC.
BD?平面BDE,
平面A′AC平面BDE.
12.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.
(1)求证:D1CAC1;
(2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.
命题立意:本题主要考查空间几何体中的平行与垂直的判定,考查考生的空间想象能力和推理论证能力.通过已知条件中的线线垂直关系和线面垂直的判定证明线面垂直,从而证明线线的垂直关系.并通过线段的长度关系,借助题目中线段的中点和三角形的中位线寻找出线线平行,证明出线面的平行关系.解决本题的关键是学会作图、转化、构造.
解析:(1)在直四棱柱ABCD-A1B1C1D1中,连接C1D,DC=DD1,
四边形DCC1D1是正方形,
DC1⊥D1C.
又ADDC,ADDD1,DC∩DD1=D,
AD⊥平面DCC1D1,
又D1C平面DCC1D1,
AD⊥D1C.
∵AD?平面ADC1,DC1平面ADC1,
且AD∩DC1=D,
D1C⊥平面ADC1,
又AC1平面ADC1,
D1C⊥AC1.
(1)题图
(2)题图
(2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN.
平面AD1E∩平面A1BD=MN,
要使D1E平面A1BD,
可使MND1E,又M是AD1的中点,
则N是AE的中点.
又易知ABN≌△EDN,
AB=DE.
即E是DC的中点.
综上所述,当E是DC的中点时,可使D1E平面A1BD.
13.已知直三棱柱ABC-A′B′C′满足BAC=90°,AB=AC=AA′=2,点M,N分别为A′B和B′C′的中点.
(1)证明:MN平面A′ACC′;
(2)求三棱锥C-MNB的体积.
命题立意:本题主要考查空间线面位置关系、三棱锥的体积等基础知识.意在考查考生的空间想象能力、推理论证能力和运算求解能力.
解析:(1)证明:如图,连接AB′,AC′,
四边形ABB′A′为矩形,M为A′B的中点,
AB′与A′B交于点M,且M为AB′的中点,又点N为B′C′的中点.
MN∥AC′.