1、简述应用意识的含义?
答案要点:有两方面的含义:一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;
另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
2、简述行为动词“探索”的基本含义?
答案要点:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。
3、简述培养数据分析观念应包括哪些内容?
答案要点:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;
了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;
通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。
可见,在统计的教学过程中,培养学生的数据分析观念非常必要。
4、课程内容的组织要重视并处理好哪几个关系?
答案要点:要重视过程,处理好过程与结果的关系;
重视直观,处理好直观与抽象的关系;
重视直接经验,处理好直接经验与间接经验的关系。
5、简述在教与学的活动中,教师的引导作用如何体现?
答案要点:教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;
通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;
能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。
四、案例解析(第1题2分,第2题6分,共8分)
1、如右图,把三角形绕A点按顺时针方向旋转90°。
让学生画出旋转后的图形,并用数对表示出C点旋转后的位置。
从课程内容上看:所考察的上位学习目标是(在方格纸上将简单图形旋转90°),(能在方格纸上用数对表示位置。)
2、李明和王佳在一起玩算“24点”的游戏,他们一共算对9次。
(1)两位同学算对的次数可能是多少?(请说明可以
采用什么策略并表示出两人可能算对的次数)(策略1分,表示次数3分,共4分)
答案要点:可以采用(一一列举)的策略,能有序、不重复、不遗漏地表示出两人可能算对的次数。
(策略1分,列出完整的可能次数3分)
李明算对的次数王佳算对的次数0 9 1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1 9 0
(2)请你解释为什么王佳不可能恰好比李明多算对2次?(2分)
答案要点:只有当算对次数是偶数的时候,两个人算对的次数可能都是奇数,可能都是偶数,这时王佳才可能恰好比李明多算对2次。
由于9是奇数,它是一个奇数与一个偶数的和,因此,王佳不可能恰好比李明多算对2次。
(只能用表内数字说明得1分,会用奇、偶性明确说明得2分)
五、案例设计(第1、2题各6分,第3题10分,共22分)
1、请举一例来说明是如何利用模型思想来解决实际问题的?(每问2分,共6分)答:〖例题〗:笼中鸡兔共20只,腿共50条,问鸡兔各几只?
〖分析与解〗:鸡和兔的只数是两个变化的量,鸡和兔的腿数是固定的量,当总只数和总腿数确定时,可建立如下的数学模型表示它们的数量关系和变化规律:
鸡数+兔子数=20
鸡数×2+兔子数×4=50用X表示鸡数,用Y表示兔子数,模型可简化为:
X+Y=20解得:X=15
2X+4Y=50 Y=5答:笼中有15只鸡,5只兔子。
〖解答这类问题的模型是〗: