第4课时图形的运动
第5课时图形与位置
3统计与概率
4数学思考
5综合实践
第1课时绿色出行
第2课时北京五日游
第3课时邮票中的数学问题
第4课时有趣的平衡
第一单元位置(用数对确定点物体的位置)
1.数用有序的两个数表示一个确定的位置就是数对。
2.用数对表示物体位置的方法。
数对的前一个数表示第几列,后一个数表示第几行。在书写时要用小括号将两个数括起来,并用逗号将两个数隔开。
如:数对(3,2)表示第三列,第二行。
3.在平面直角坐标系中,一个图形向左右平移,对应点的数对只是列数变,行数不变。向上下平移,只是行数变,列数不变。
第二单元分数乘法
1.分数乘法意义
(1)能改写成加法算式的分数乘法算式意义与整数乘法的意义相同。是求几个相同加数的和的简便运算。
2.分数乘法的计算方法:
(1)分数与整数相乘,用分子与整数相乘的积做分子,分母不变。
(2)分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
注意:在计算分数乘法时,分子和分母能约分的尽量先约分,再计算,这样可以简便。
3.倒数的认识
(1)倒数的定义:乘积为1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(2)求倒数的方法:
①求分数的倒数是交换分子分母的位置。
②求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
③求a(a≠0)的倒数就用1÷a=1/a。
(3)1的倒数是它本身;0没有倒数。
4.解决问题
求一个数的几分之几是多少要用乘法计算。【单位“1”的量×分率】
第三单元分数除法
1.分数除法的意义
是已知两个数的积与其中一个因数,求另一个因数的运算。(除法是乘法的逆运算)
2.分数除法的计算方法:
除以一个不等于0的数,等于乘这个数的倒数。
3.比和比的应用
(1)两个数相除也叫两个数的比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。
(2)比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。