7.假分数与带分数、整数之间的互化
(1)假分数化成整数或带分数:用假分数的分子除以分母,如果能够整除,所得的商就是这个假分数化成的整数;如果不能整除,商的整数部分就是带分数的整数部分,余数就是分数部分的分子,原分母不变。
(2)整数化成假分数:用指定的分母作分母,用整数乘分母的积作分子。
(3)带分数化成假分数:用整数部分乘分母的积加上分数部分的分子作分子,原分母不变。
8.分数、小数、百分数之间的互化
小数化成分数:先改写成分母是10、100、1000……的分数,再约分;分数化成小数,用分子除以分母;小数化成百分数,把小数的小数点向右移动两位,并在后面加上百分号;百分数化成小数,把百分号去掉,并把小数点向左移动两位;分数化成百分数,先把分数改写成小数,再把小数改写成百分数;百分数化成分数,先把百分数改写成分母是100的分数,再化简。
9.判断一个分数能否化成有限小数的方法
先看这个分数是不是最简分数,不是最简分数要化成最简分数;再看最简分数的分母,如果分母中只有质因数2或5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,就不能化成有限小数。
提示:判断分母是否只含有质因数2或5,可以参照“2和5的倍数的特征”进行分析。
10.数的大小比较
(1)整数的大小比较:先看位数,位数多的数大;位数相同,从高位比起,相同数位上的数大的那个数就大。
(2)分数的大小比较:先比较整数部分,整数部分大的那个数就大;整数部分相同比较十分位,十分位上数大的那个数就大;十分位相同,比较百分位,百分位上数大的那个数就大;百分位相同,比较千分位……
(3)真分数、假分数和整数部分相同的带分数的大小比较:分母相同,分子大的分数大;分子相同,分母小的分数大;分子分母都不同,通分化成同分母或同分子分数后再比较;假分数大于真分数。
整数部分不同的带分数,整数部分大的分数大。
例如:7856>856
6933>6920
例如:62.57>52.75
4.256>4.252
提示:比较小数、分数和百分数的大小时,通常把分数和百分数化成小数进行比较,最后的结果一定要用原数。
11.用直线上的点表示数(数轴)
(1)小学阶段学过的数都可以用直线上的点来表示。例如:
(2)在这条直线上,0是正数和负数的分界点,箭头方向表示正数的方向,每一大格的长度都相等。
提示:用数轴上的点可以比较数的大小。数轴上表示数的点的位置越往右,表示的数越大,点的位置越往左,表示的数越小。
12.因数与倍数
如果a÷b=c(a、b、c都是整数,且b≠0),就说a是b和c的倍数,b和c是a的因数。如果一个数既是a的因数,又是b的因数,那它就是a和b的公因数。如果一个数既是a的倍数,又是b的倍数,那它就是a和b的公倍数。
注意:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
13.奇数与偶数
整数中,能被2整除的数是偶数,不能被2整除的数是奇数。
注意:一个自然数不是奇数,就是偶数。
14.质数与合数
质数又称素数,指在大于1的自然数中,除了1和它本身外,没有其他因数的数。
合数是指自然数中除了1和它本身之外,还有其他因数的数。
重点:1既不是质数,也不是合数。最小的质数是2,它是唯一的偶质数;最小的合数是4。
15.2、3、5的倍数的特征
(1)2的倍数的特征:个位上的数是0、2、4、6、8。
(2)3的倍数的特征:各个数位上的数字的和是3的倍数。
(3)5的倍数的特征:个位上的数是0或5。
16.分数的基本性质:
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。利用分数的基本性质可以进行分数的通分和化简。
17.小数的性质: