在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。
学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?
这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率*工作时间=工作总量
在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)
在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。
在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。
第一部分:概念
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)5=25+45
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有的算式并计算。
10、分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:25或3:6或
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:xy=k(k一定)或k/x=y