订单查询
首页 其他文档
小学数学奥数题100道及答案大全
大小:28.97KB 11页 发布时间: 2023-04-25 14:59:00 7.45k 6.44k

解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。

共有3×3×4!=216(个)。

71.左下图中有多少个锐角?

解:C(11,2)=55个

72.10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

解:c(10,2)-10=35种

73.一牧场上的青草每天都匀速生长。

这片青草可供27头牛吃6周,或供23头牛吃9周。

那么可供21头牛吃几周?

解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。

21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。

74.有一水池,池底有泉水不断涌出。

要想把水池的水抽干,10台抽水机需抽8时,8台抽水机需抽12时。

如果用6台抽水机,那么需抽多少小时?

解:将1台抽水机1时抽的水当做1份。

泉水每时涌出量为

(8×12-10×8)÷(12-8)=4(份)。

水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。

75.规定a*b=(b+a)×b,求(2*3)*5。

解:2*3=(3+2)*3=15

15*5=(15+5)*5=100

76.1!+2!+3!+…+99!的个位数字是多少?

解:1!+2!+3!+4!=1+2+6+24=33

从5!开始,以后每一项的个位数字都是0

所以1!+2!+3!+…+99!的个位数字是3。

77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。

在200个信号中至少有多少个信号完全相同?

解:4*4*4=64

200÷64=3……8

所以至少有4个信号完全相同。

77.(2)在今年入学的一年级新生中有370多人是在同一年出生的。

试说明:他们中至少有2个人是在同一天出生的。

解:因为一年最多有366天,看做366个抽屉

因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的。

78.从前11个自然数中任意取出6个,求证:其中必有2个数互质。

证明:把前11个自然数分成如下5组

(1,2,3)(4,5)(6,7)(8,9)(10,11)

6个数放入5组必然有2个数在同一组,那么这两个数必然互质。

79.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。

小明往返一趟共行了多少千米?

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441