偶数±偶数=偶数
奇数±奇数=奇数
奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数
奇数×奇数=奇数
奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数
2
第一章数和数的运算
一概念
(一)整数
1.整数的意义:自然数和0都是整数。
2.自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3.数的整除:
(1)整除、倍数、因数:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。倍数和因数是相互依存的。
例如因为35能被7整除,所以35是7的倍数,7是35的因数。
★一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
★一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。
(2)整除的性质:
★个位上是0、2、4、6、8的数,都能被2整除,例:202、80、304都能被2整除。
★个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
★一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
★一个数各位数上的和能被9整除,这个数就能被9整除。
★能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
(3)奇偶性:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
非0自然数按能否被2整除的特征可分为奇数和偶数。
(4)质数与合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
★1既不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
(5)分解质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数28=2×2×7
(6)公因数与公倍数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。
公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
★1和任何自然数互质。★相邻的两个自然数互质。★两个不同的质数互质。★当合数不是质数的倍数时,这个合数和这个质数互质。
★两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。