1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2.圆有无数条半径,有无数条直径。
3.圆心决定圆的位置,半径决定圆的大小。
4.把圆对折,再对折就能找到圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.
9.C=d或C=r.半圆的周长
10.1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
7=21.98 8=25.12 9=28.26 10=31.4
圆的面积
11.用S表示圆的面积,r表示圆的半径,那么S=r^2 S环=(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
15.两个数相除,又叫做这两个数的比。比的后项不能为0.
16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1
0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外