下面是小编整理的2023年小升初数学应用题必考题型,希望能帮助到大家。
2023年小升初数学应用题必考题型
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于拟定总数量和与之相相应的总份数。
算术平均数:已知几个不相等的同类量和与之相相应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以运用公式。此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为+=,汽车的平均速度为2÷=75(千米)
(2)归一问题:已知互相关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的环节的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组相应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的规定算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例:一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?
分析:必须先求出平均天天织布多少米,就是单一量。6930÷(4774÷31)=45(天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,但是变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。
例:修一条水渠,原计划天天修800米,6天修完。实际4天修完,天天修了多少米?
分析:由于规定出天天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200(米)
(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2=大数大数-差=小数
(和-差)÷2=小数和-小数=大数
例:某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求本来甲班和乙班各有多少人?
分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94-12)÷2=41(人),乙班在调出46人之前应当为41+46=87(人),甲班为94-87=7(人)
(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就拟定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也也许是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数
例:汽车运送场有大小货车115辆,大货车比小货车的5倍多7辆,运送场有大货车和小汽车各有多少辆?
分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍相应,总车辆数应(115-7)辆。
列式为:(115-7)÷(5+1)=18(辆),18×5+7=97(辆)