如果从每个木箱中拿出60个橘子,那么5个木箱中剩下的橘子的个数的总和等于原来两个木箱里橘子个数的和。
原来每个木箱中有多少个橘子?
(3)某食品店有5箱饼干,如果从每个箱子里取出20千克,那么5个箱子里剩下的饼干正好等于原来3箱饼干的重量。
原来每个箱子里装多少千克饼干?48.一个木器厂要生产一批课桌。
原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。
原计划要生产多少张课桌?
【思路导航】这道题的关键是要求出工作时间。
因为实际比原计划提前1天完成任务,这就相当于把原计划最后1天的任务平均分到前面的几天去做,正好分完。
实际比原计划每天多生产4张,所以实际生产的天数是60÷4=15天,原计划生产的天数是15+1=16天。
所以原计划要生产60×16=960张。
49.(1)电视机厂接到一批生产任务,计划每天生产90台,可以按期完成。
实际每天多生产5台,结果提前1天完成任务。
这批电视机共有多少台?
(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完。
这本故事书有多少页?
(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天修完。
一共修了多少米?50.有两盒图钉,甲盒有72只,乙盒有48只,从甲盒拿出多少只放入乙盒,才能使两盒中的图钉相等?
【思路导航】由条件可知,甲盒比乙盒多72-48=24只。
要盒两盒中的图钉相等,只要把甲盒比乙盒多的24只图钉平均分成2份,取其中的1份放入乙盒就行了。
所以应拿出24÷2=12只。
51.(1)有两袋面粉,第一袋面粉有24千克,第二袋面粉有18千克。
从第一袋中取出几千克放入第二袋,才能使两袋中的面粉重量相等?
(2)有两盒图钉,甲盒有72只,乙盒有48只。
每次从甲盒中拿4只放到乙盒,拿几次才能使两盒相等?
(3)有两袋糖,一袋是68粒,另一袋是20粒。
每次从多的一袋中拿出6粒放到少的一袋里,拿几次才能使两袋糖同样多?
52.(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
53.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
54.
55.下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?
【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
56