订单查询
首页 其他文档
2023高考数学复习方法总结4篇
大小:24.28KB 5页 发布时间: 2023-05-24 13:47:56 16.26k 14.3k

方法一、调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等。

进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端。

以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

高考数学复习技巧

高考数学可以说既重基础又讲难度,一套高质量的数学题必然很好地兼顾这两点,因此我们在平时学习和复习的时候一定要把握好二者的平衡,才能在难度波动较大的高考数学中立于不败之地。

要做到这一点,一个比较好的方法就是“小题大做”法。

这种方法能够帮助同学们在日常做题时更加夯实基础,但并不适用于考试。

很多选择填空题其实往往蕴涵着一些常见的思路、结论,对于大题的解答很有帮助。

大题里的难题一般有两类,一是几种基本点的综合,二是一种不易想到的特殊思路方法。

如果做好了选择填空,很明显第一种难题将不再困难,而即使面对第二种题目,也会因为长期练习而思路方法比较灵活,且更容易写出一些正确的步骤获得分数。

2023高考数学复习方法总结4

一、分类记忆法

遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。

例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。

求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。

二、推理记忆法

许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。

例如,平行四边形的性质,我们只要记住它的数学定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。

高考数学如何复习备考

一、分析高考真题,从真题中寻找启示

近几年高考数学试题体现能力的同时变得更加人性化,不同层次的学生都能得到一定的分数。

由此可见,强调三基,突出三基,考查三基已成为命题的主旋律,同时高考数学试题清晰地告诉我们,如果我们平时的三基训练中下足功夫,考好高考数学是不成问题的。

二、贴近课本,落实基础

尽管当前高考数学试卷不再刻意追求知识点的覆盖面,但凡是《考试说明》中规定的知识点,在复习时一个都不能遗漏。

况且,某个知识点,连续几年不考的概率很小。

从历年全国各地的高考数学试题中可以明显看出,选择题1-6题属于送分题,主要考查数学的基本概念、基本知识和基本的计算解题方法,所以第一阶段的复习,必须扎根于课本,回到基础中去,对课本中的概念、法则、性质、定理、公理、公式等进行梳理,要理清知识发生的本原(如等差数列、等比数列求和公式的推导过程等),考生要注意从学科整体意义上建构知识网络,形成完整的知识体系,掌握知识之间内在联系与规律,如三个二次的关系等。

重点放在掌握例题涵盖的知识及解题方法上,这一阶段所做的题目要基本,但也要注意知识之间适当的综合,比如复习集合,不能停留在高一新课讲授时的题目水平上,应该适度地选做一些与其他知识综合的题目,可以选做近几年来高考中以集合为背景的题目。

三、注重提炼通性通法,熟练掌握数学模式题的通用解法

从高考数学试题中可以明显看出,高考重视对基础知识、基本技能和通性通法的考查。

所谓通性通法,是指具有某些规律性和普遍意义的常规解题模式和常用的数学思想方法。

现在高考比较重视的就是这种具有普遍意义的方法和相关的知识。

例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根公式、根与系数的关系、两点之间的距离公式等可以编制出很多精彩的试题。

这些问题考查了解析几何的基本思想方法,这种通性通法在高中数学中是很多的,如二次函数在闭区间上求最值的一般方法:配方、作图、截段等。

考生在复习的过程中要对这些普遍性的东西不断地进行概括总结,不断地在具体解题中细心体会。

现在的高考命题的一个原则就是淡化特殊技巧,考生在复习中千万不要去刻意追求一些解题的特殊技巧,尽管一些数学题目有多种解法,有的甚至有十几种解法,但这些解法中具有普遍意义的通用解法也就一两种而已,更多的是针对这个题目的专用解法,这些解法作为兴趣爱好去欣赏是可以的,但在高考复习中却不能把它当作重点。

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441