二、数论
1.奇偶性问题
2.位值原则
3.数的整除特征
4.整除性质
5.带余除法
6。唯一分解定理
7。约数个数与约数和定理
8。同余定理
9.完全平方数性质
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计
三、几何图形
四、典型应用题
1.植树问题
①开放型与封闭型
②间隔与株数的关系
2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数
3.列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间
4.年龄问题差不变原理
5.鸡兔同笼假设法的解题思想
6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间
7.平均数问题
8.盈亏问题分析差量关系
9.和差问题
10.和倍问题
11.差倍问题
12.逆推问题还原法,从结果入手
13.代换问题列表消元法等价条件代换
五、行程问题
1.相遇问题路程和=速度和×相遇时间
2.追及问题路程差=速度差×追及时间
3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2
4.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数
5.环形跑道
6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。