圆是以圆心为对称中心的中心对称图形
定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
定理一条弧所对的圆周角等于它所对的圆心角的一半
推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
27定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
①直线L和⊙O相交d<r
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
28切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
切线的性质定理圆的切线垂直于经过切点的半径
推论1经过圆心且垂直于切线的直线必经过切点
推论2经过切点且垂直于切线的直线必经过圆心
切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
圆的外切四边形的两组对边的和相等
29弦切角定理弦切角等于它所夹的弧对的圆周角
推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
30切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
如果两个圆相切,那么切点一定在连心线上
①两圆外离d>R+r②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)
⑤两圆内含d<R-r(R>r)
定理相交两圆的连心线垂直平分两圆的公共弦
定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
正n边形的每个内角都等于(n-2)x180°/n
定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
正n边形的面积Sn=pnrn/2 p表示正n边形的周长
正三角形面积√3a/4 a表示边长
如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
31弧长计算公式:L=n兀R/180
32扇形面积公式:S扇形=n兀R2/360=LR/2