20.(9分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
星期 一 二 三 四 五 六 日
增减 +5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9
(1)根据记录可知前三天共生产辆;
(2)产量最多的一天比产量最少的一天多生产辆;
(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?
【解答】解:(1)+5+(﹣2)+(﹣4)= 5+(﹣6)=﹣1,
150×3+(﹣1)=450﹣1=449(辆),
∴前三天共生产449辆;
(2)观察可知,星期六生产最多,星期五生产最少,
+16﹣(﹣10)=16+10=26(辆),
∴产量最多的一天比产量最少的一天多生产26辆;
(3)+5+(﹣2)+(﹣4)+(+13 )+(﹣10)+(+16)+(﹣9),
=5﹣2﹣4+13﹣10+16﹣9,
=5+13+16﹣2﹣4﹣10﹣9,
=34﹣25,
=9,
∴工人这一周的工资总额是:(1050+9)×50+9×10=52950+90=53040(元).
21.(10分)操作探究:已知在纸面上有一数轴(如图所示).
操作一:
(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;
操作二:
(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:
①5表示的点与数________表示的点重合;
②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.
解:(1)3(3分)
(2)①-3(6分)
②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A、B两点表示的数分别是-4.5,6.5.(9分)
22.(10分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.[
(1)若AB=6千米,老王开车从A到D共需多少时间?
(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)
【解答】解:(1)若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:
=
=
=2.4(小时);
(2)从A到D所需时间不变,(答案正确不回答不扣分)
设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,
t=
=
=2.4(小时).