1、树的基本概念
树(tree)是一种简单的非线性结构。在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点。每一个结点可以有多个后件,它们称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件个数称为该结点的度。叶子结点的度为0。在树中,所有结点中的最大的度称为树的度。
2、二叉树及其基本性质
(1)二叉树的定义
二叉树是一种很有用的非线性结构,具有以下两个特点:
①非空二叉树只有一个根结点;
②每一个结点最多有两棵子树,且分别称为该结点的左子树和右子树。
由以上特点可以看出,在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树,而树结构中的每一个结点的度可以是任意的。另外,二叉树中的每个结点的子树被明显地分为左子树和右子树。在二叉树中,一个结点可以只有左子树而没有右子树,也可以只有右子树而没有左子树。当一个结点既没有左子树也没有右子树时,该结点即为叶子结点。
(2)二叉树的基本性质
二叉树具有以下几个性质:
性质1:在二叉树的第k层上,最多有2k-1(k≥1)个结点;
性质2:深度为m的二叉树最多有2m-1个结点;
性质3:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
二叉树的遍历
在遍历二叉树的过程中,一般先遍历左子树,再遍历右子树。在先左后右的原则下,根据访问根结点的次序,二叉树的遍历分为三类:前序遍历、中序遍历和后序遍历。
(1)前序遍历:先访问根结点、然后遍历左子树,最后遍历右子树;并且,在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
(2)中序遍历:先遍历左子树、然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。
(3)后序遍历:先遍历左子树、然后遍历右子树,最后访问根结点;并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。
疑难解答:树与二叉树的不同之处是什么?
在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树,而树结构中的每一个结点的度可以是任意的。