【对应练习1】
小明的课外书与小芳课外书之比为6:1,如果两人再各买2本后,小明现有的课外书与小芳的课外书之比为5:1,小明原有课外书多少本?
解析:
份数差统一为(6-1)×(5-1)=20(份)
原来小明与小芳课外书之比为24:4,现在之比为25:5
每一份:2÷(25-24)=2(本)
小明原来:2×24=48(本)
答;略。
【对应练习2】
艾迪和薇儿出去玩,艾迪和薇儿两人所带的钱数之比是2:3,两人都用去了200元钱买东西,买完后艾迪和薇儿剩下的钱数之比是4:7,问薇儿原来带了多少钱?
解析:
份数之差统一为(3-2)×(7-4)=3份
原来之比变为6:9,现在之比为4:7
每一份为:200÷(6-4)=100(元)
薇儿原来:100×9=900(元)
答:略。
【对应练习3】
三年前,爸爸和妈妈的年龄比是7:6,三年后爸爸和妈妈的年龄比是17:15,那么爸爸妈妈今年各多少岁?
解析:
三年前到三年后,两人年龄各增长了6岁
三年前,年龄差为7-6=1份;三年后,年龄差为17-15=2份
1×2=2份,即三年前年龄之比为14:12,
每一份为:6÷(17-14)=2(岁)
三年前爸爸:2×14=28(岁),妈妈:2×12=24(岁)
现在爸爸28+3=31(岁),现在妈妈:24+3=27(岁)
答:略。
【对应练习4】
今年大胖与二胖的年龄比是7:5,五年后,大胖与二胖的年龄比是13:10,问两人今年各几岁?
解析:大胖21岁,小胖15岁。
【考点十三】寻找不变量:和不变问题。
【方法点拨】
和不变问题:(给来给去和不变)
第一步:统一不变的和量;
第二步:统一一份量;
第二步:得出一份量。
【典型例题】
张师傅加工了一批零件,已加工零件的个数与未加工零件个数比为1:3,如果再加工36个零件,那么已加工的零件个数与未加工的零件个数的比是2:3,这批零件一共有多少个?
解析:
由题意,总量不变。
原来已加工与未加工的总份数为1+3=4(份)