长:48×
宽:48×
高:48×
体积:21×15×12=3780(立方厘米)
答:略。
【考点六】按比例分配:较复杂的连比问题。
【方法点拨】
稍复杂的连比问题主要是和与比都不确定,先根据化连比的方法求比比,再根据不同问题求出对应比的和,最后再按比例分配。
【典型例题】
有一个长方体,棱长和是352厘米,长与宽的比是2:1,宽与高的比是3:2,这个长方体的体积是多少立方厘米?
解析:长+宽+高:352÷4=88(厘米)
长:宽:高=6:3:2
长:88×
宽:88×
高:88×
体积:48×24×16=18432(立方厘米)
答:略。
【对应练习1】
一个长方体所以棱长之和是452厘米,长、宽之比是8:5,宽、高之比是6:7,求长方体的体积。
解析:长+宽+高:452÷4=113(厘米)
长:宽:高=48:30:35
长:113×
宽:113×
高:113×
体积:48×30×35=50400(立方厘米)
答:略。
【对应练习2】
有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220厘米,求这个长方体的体积。
解析:长+宽+高:220÷4=55(厘米)
长:宽:高=6:3:2
长:55×
宽:55×
高:55×
体积:30×15×10=4500(立方厘米)
答:略。
【考点七】按比例分配:和比问题中的相遇问题。
【方法点拨】
该类型题目先根据相遇问题公式求出速度和,即速度和=路程÷相遇时间,再先求出每份数,即和÷份数和=每份数,最后再分别求出各部分数量是多少。
【典型例题】
甲、乙两站相距360km,一列快车和一列慢车分别从两站同时相对而行,3.6小时相遇。已知快车与慢车的速度比是3:2,慢车每小时行多少千米?快车行完全程要几小时?