【对应练习1】
一项工程,甲队单独做8天完成,乙队单独完成比甲队多用4天,现在甲乙合作几天后,乙另有任务调走,甲又干做3天才完成任务,求乙队工作了几天?
解析:
乙队效率:1÷(8+4)=
答:略。
【考点十一】请假问题:已知单量的完成时间,求请假时间。
【方法点拨】
合作效率=各单位量工作效率之和
工效和×合作时间=工作总量
工作总量÷工 效 和=合作时间
工作总量÷合作时间=工效和
【典型例题】
某项工程,甲单独做要20天完成,乙单独做要30天完成。开始两人合作,中途因甲有事请假离开几天,一共经过15天才完成工程,甲请了几天假?
解析:此题关键是乙全程都在做工,时间是15天,可求出剩下工作量,即是甲需完成的。
(1-
答:略。
【对应练习1】
一项工程,甲单独做要75天完成,乙单独做要50天完成,现在两人合作,甲中途离开了几天。整个工程40天才完工,甲中途离开了多少天?
解析:40-(1-
答:略。
【对应练习2】
一项工作,甲单独做要10天完成,乙单独做要15天完成,现在由两人一起来完成这项工作,中途甲有事离开,剩下的由乙来完成,从工作开始到工作结束一共用了12天,那么,甲比乙少做了多少天?
解析:12-(1-
答:略。
【对应练习3】
一项工程由甲乙丙单独做各要10小时,15小时和20小时完成,现在三人合作,中间甲休息了几小时,结果共用了6小时完成,甲休息了几小时?
解析:6-[1-(
答:略。
【考点十二】请假问题:已知一共完成的时间,求单量单独完成时间。
【方法点拨】
合作效率=各单位量工作效率之和
工效和×合作时间=工作总量
工作总量÷工 效 和=合作时间
工作总量÷合作时间=工效和
【典型例题】
一件工作,甲单独做要20天完成,乙单独做要12天完成,这项工作先由甲做了若干天,再由乙继续做完,从开始到完工共用了14天,甲做了几天?
解析:假设法解题
假设这14天都是甲单独做的,那么: