南岸 77 92 84 86 74 76 81 71 85 87
北岸 72 87 78 83 83 85 75 89 90 95
(1)记评分在80以上(包括80)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;
(2)根据表中的数据完成茎叶图:
(3)分别估计两岸分值的中位数,并计算它们的平均数,试从计算结果分析两岸环保情况,哪边保护更好?
19.如图,在四棱锥S﹣ABCD中,四边形为ABCD矩形,E为SA的中点,SA=SB,AB=2 ,BC=3.
(1)证明:SC∥平面BDE;
(2)若BC⊥SB,求三棱锥C﹣BDE的体积.
20.已知点P(0,﹣2),点A,B分别为椭圆E: + =1(a>b>0)的左右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且 = .
(1)求E的方程;
(2)设过点的动直线l与E相交于M,N两点,当坐标原点O位于MN以为直径的圆外时,求直线l斜率的取值范围.
21.已知函数f(x)=2x3﹣3x+1,g(x)=kx+1﹣lnx.
(1)设函数 ,当k<0时,讨论h(x)零点的个数;
(2)若过点P(a,﹣4)恰有三条直线与曲线y=f(x)相切,求a的取值范围.
[选修4-4坐标系与参数方程]
22.在直角坐标系xOy中,圆C的方程为(x﹣1)2+(y﹣1)2=2,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为 .
(1)写出圆C的参数方程和直线l的普通方程;
(2)设点P为圆C上的任一点,求点P到直线l距离的取值范围.
[选修4-5不等式选讲]
23.已知函数f(x)=|x﹣4|+|x﹣2|.
(1)求不等式f(x)>2的解集;
(2)设f(x)的最小值为M,若2x+a≥M的解集包含[0,1],求a的取值范围.