缺点:计算量大,且容易出错。
应用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为。然后进行后续证明与求解。
传统法
你们在学立体几何的时候,讲了很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了6和8有两种解题方法以外,其他都是有唯一的方法。所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。
另外,还有一类题,是求点到平面距离的。这类题百分之百用等体积法求解。
4.第四道大题:数列
从这里开始,就明显感觉题目变难了,但是掌握了套路和方法,这题并不困难。
数列主要是求解通项公式和前n项和。
首先是通项公式。
看题目中给出的条件的形式。不同形式对应不同的解题方法
通项公式的求法我给出了8种,着重掌握1,4,5,6,7,8。其实4-8可以算作一种。
除了以上八种方法,还有一种叫定义法,就是题中给出首项和公差或者公比,按照等差等比数列的定义进行求解。
鉴于高考大题不会出这么简单的,以及即使出了,默认大家都会,我就没列出这种方法。
下面说说求前n项和。
求前n项和总共四种方法:倒序相加法,错位相减法,分组求和法,裂项相消法。
以后求前n项和,就只需要考虑这四种方法就可以了。
同样的,每种方法都有对应的使用范围。
当然,还有课本上关于等差数列和等比数列求前n项和的方法。在此就不列举了,请大家不要忘记。
5.第五道大题:圆锥曲线
高考对于圆锥曲线的考察也是有套路可循的。一般套路就是:前半部分是对基本性质的考察,后半部分考察与直线相交。
如果你做高考题做得足够多的话,你会发现,后半部分的步骤基本是一致的。即:设直线,然后将直线方程带入圆锥曲线,得到一个关于x的二次方程,分析判别式,韦达定理,利用维达定理的结果求解待求量。
所以,学好圆锥曲线需要明白三件事。
1三种圆锥曲线的性质
在此不列举,请大家自行总结。
2求轨迹的方法
求动点的轨迹方程的方法有7种。下面将一一介绍,不过,作为前半部分,求轨迹方程不会特别难的,如果前面就把学生卡住了,那后面直接没法做了。我们幻想,并没有如此变态的出题老师。
a)直接法(性质法)
这类方法最常见,一般设置为第一问,题干中给出圆锥曲线的类型,并给出部分性质,比如离心率,焦点,端点等,根据圆锥曲线的性质求解a,b。
b)定义法
定义法的意思呢,就是题目中给出的条件其实是某种我们学过的曲线的定义,这种情况下,可以根据题目描述,确定曲线类型,再根据曲线的性质,确定曲线的参数。各曲线的定义如下:
到定点的距离为定值的动点轨迹为圆;
到两个定点的距离之和为定值的动点轨迹为椭圆;
到两个定点的距离之差为定值的动点轨迹为双曲线;
到定点与定直线的距离之比为定值的动点轨迹为圆锥曲线,根据比值大小确定是哪一种曲线
c)直译法
顾名思义,就是直接翻译题目中的条件。将题目中的文字用数学方程表达出来即可。
d)相关点法
假如题目中已知动点p的轨迹,另外一个动点m的坐标与p有关系,可根据此关系,用m的坐标表示p的坐标,再带入p的满足的轨迹方程,化简即可得到m的轨迹方程。
e)参数法
当动点坐标x、y之间的直接关系难以找到时,可以先找到x、y与另一参数t的关系,得再消去参变数t,得到轨迹方程。