A.是奇函数
B.是偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.
5.奇函数y=f(x)(x∈R)的图象必过点( )
A.(a,f(-a)) B.(-a,f(a))
C.(-a,-f(a)) D.(a,f(1a))
解析:选C.∵f(x)是奇函数,
∴f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象必过点(-a,-f(a)).
6.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时( )
A.f(x)≤2 B.f(x)≥2
C.f(x)≤-2 D.f(x)∈R
解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.
7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________.
解析:f(x)=x2+(1-a)x-a为偶函数,
∴1-a=0,a=1.
答案:1
8.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x∈R)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.
解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.
答案:③④
9.①f(x)=x2(x2+2);②f(x)=__;
③f(x)=3x+x;④f(x)=1-x2x.
以上函数中的奇函数是________.
解析:(1)∵x∈R,∴-x∈R,
又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),
∴f(x)为偶函数.
(2)∵x∈R,∴-x∈R,
又∵f(-x)=-x-x=-__=-f(x),
∴f(x)为奇函数.
(3)∵定义域为[0,+∞),不关于原点对称,
∴f(x)为非奇非偶函数.
(4)f(x)的定义域为[-1,0)∪(0,1]
即有-1≤x≤1且x&ne,高中化学;0,则-1≤-x≤1且-x≠0,
又∵f(-x)=1--x2-x=-1-x2x=-f(x).
∴f(x)为奇函数.
答案:②④
10.判断下列函数的奇偶性: