订单查询
首页 其他文档
公务员考试试题选择题及答案大全
大小:510.11KB 64页 发布时间: 2023-12-20 16:59:01 15.04k 13.75k

6.213,417,6121,101147,()

A、1613087 B、161284C、601147D、161168

7.65,5,6,30,()

A、180B、60C、100D、120

8.1,14,19,116,()

A、132B、128C、125D、124

6.选A

高位:2+4=6 4+6=10 6+10=16

中位:1

低位:3*7=21 7*21=147 12*147=3087

得出结果:1613087

8.选C

高位都是1

低位依次为4、9、16、25

都没有正确答案吗

******************************************************************************************************************************************

数字的整除特性

数的整除的特征

我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。

2.末位数字为零的整数必被10整除。这种数总可表为10k(其中k为整数)。

3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。

4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。

如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。

由于4|96

能被25整除的整数,末两位数只可能是00、25、50、75。能被4整除的整数,末两位数只可能是00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。

5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。

由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。

如判断765432是否能被8整除。

因为765432=765000+432

显然8|765000,故只要考察8是否整除432即可。由于432=8×54,即8|432,所以8|765432。

能被8整除的整数,末三位只能是000,008,016,024,…984,992。

由于125×1=125,125×2=250,125×3=375;

125×4=500,125×5=625;125×6=750;

125×7=875;125×8=10000

故能被125整除的整数,末三位数只能是000,125,250,375,500,625,750,875。

6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。

如478323是否能被3(9)整除?

由于478323=4×100000+7×10000+8×1000+3×100+2×10+3

=4×(99999+1)+7(9999+1)+8×(999+1)+3×(99+1)+2×(9+1)+3=(4×99999+7×9999+8×999+3×99+2×9)+(4+7+8+3+2+3)

前一括号里的各项都是3(9)的倍数,因此,判断478323是否能被3(9)整除,只要考察第二括号的各数之和(4+7+8+3+2+3)能否被3(9)整除。而第二括号内各数之和,恰好是原数478323各个数位上数字之和。

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441