答:略。
【对应练习5】
制造一个零件,甲需要5分钟,乙需要10分钟, 丙需要8分钟,现在三人共同加工同一种零件若干个,结束任务时,甲比丙多做24个,这批零件一共有多少个?
解析:
甲效:
每一份:24÷(8-5)=8(个)
一共:8×(8+4+5)=136(个)
答:略。
【考点十】按比例分配:单量和比的问题。
【方法点拨】
该类型题是已知比和其中一个量,先求出每一份量是多少,即部分数÷对应份数=每份数,再求另外一个单量。
【典型例题1】
已知甲数是21,甲、乙的比是3:5,求乙数是多少?
解析:21÷4×3=9
答:略。
【对应练习1】
一种糖水,糖和水按照1:150配制的,现有糖100克,可以配制这样的糖水多少克?
解析:100÷1×(1+150)=15100(克)
答:略。
【对应练习2】
一个手机信号发射接收塔埋在地下与露出地面部分的比是3:18,埋在地下的部分是4米,那么这个塔的全长是多少米?
解析:4÷3×(18+3)=28(米)
答:略。
【对应练习3】
一种什锦糖是由水果糖、奶糖、软糖按5:3:2混合而成的。
(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?
解析:20÷5×3=12(千克)
如果先称出15千克的奶糖,水果糖与软糖各需多少千克?
解析:
水果糖:15÷3×5=25(千克)
软糖:15÷3×2=10(千克)
答:略。
【对应练习4】
把一批书按3:4:5的比分配给三、四、五3个年级的学生,已知三年级分到了180本,那么五年级分到多少本书?
解析:180÷3×5=300(本)
答:略。
【对应练习5】
学校美术组的人数是书法组的
解析:
美术组:30×