4.(4分)6÷16=0.375=15:40==37.5%
【分析】解答此题的突破口是0.375,把0.375化成分数并化简是,根据分数的基本性质,分子、分母都乘3就是;根据分数与除法的关系,=3÷8,再根据商不变的性质,被除数、除数都乘2就是6÷16;根据比与分数的关系,=3:8,再根据比的基本性质,比的前、后项都乘5就是15:40;把0.375的小数点向右移动两位,添上百分号就是37.5%.
【解答】解:6÷16=0.375=15:40==37.5%;
故答案为:16,15,24,37.5.
【点评】本题主要是考查除式、小数、分数、百分数、比之间的关系及转化,利用它们之间的关系和性质进行转化即可.
5.(2分)在3,6,9,35这四个数中,请找出一个与众不同的数35,它与众不同,是因:35不是3的倍数.
【分析】通过分析可知,在3、6、9、35中,这四个数中,3、6、9都是3 的倍数,而35不是3 的倍数,所以35与其它三数不同.
【解答】解:在3、6、9、35中,请你找出一个与众不同的数是35,原因是35不是3的倍数;
故答案为:35,35不是3的倍数.
【点评】完成本题要注意是求“与众不同的一个”,即其中一个与其它三个不同的,所以应是35;此题还可以根据6、9、35是合数,而3是质数进行解答.
6.(1分)一张精密零件图纸的比例尺是10:1,在图纸上量得某一零件的长度是15毫米,这个零件的实际长度是1.5毫米.
【分析】根据实际距离=图上距离÷比例尺,求出这个零件的实际长度即可.
【解答】解:15÷=1.5(毫米),
答:这个零件的实际长度是1.5毫米.
故答案为:1.5.
【点评】关键是灵活利用比例尺=图上距离:实际距离,求出实际距离.
7.(2分)王东和李阳用转盘(如图)玩游戏,如果转盘指针指向质数就是王东胜,指向合数就是李阳胜.在A、B处填上合适的数(不与转盘上的数相同),使这个游戏对双方都公平.A可以是质数(如3),B可以是质数(如7).
【分析】相当把一个圆平均分成8份,15是合数占2份,6、10也是合数,各占1份,这样3个合数正好是半圆,要想游戏规则公平,其余的各份均为质数.
【解答】解:如图
3个合数6、10、15正好占半圆,要想游戏规则公平,其余各份应该都是质数,即A、B均为质数.
故答案为:质数(如3),质数(如7).
【点评】要想游戏规则公平,参与游戏的各方出现的可能性必须相同.
8.(1分)把16厘米长的铁丝分成三段(整厘米)围成一个三角形,这个三角形最长的一条边是7厘米.
【分析】根据三边的关系:两边之和必须大于第三边,可知最长的一条边不能超过周长的一半,据此可解.
【解答】解:16÷2=8(厘米),
8﹣1=7(厘米),
所以最长的一条边最多长7厘米.
故答案为:7.
【点评】掌握三角形三边之间的关系和周长的概念是关键.
9.(2分)如图中大长方形的周长是C厘米,剪去一个最大的正方形(如图,单位:厘米),剩下的长方形周长是C﹣2b或2a或(a﹣b+b)×2.厘米.
【分析】如图所示,长方形中最大的正方形的边长应等于长方形的宽,于是可以求出剩余部分的长和宽的值,进而利用长方形的周长公式即可求解.
【解答】解:长方形中最大的正方形的边长应等于长方形的宽,
剩下的长方形周长是:C﹣2b或2a 或(a﹣b+b)×2.
故答案为:C﹣2b或2a 或(a﹣b+b)×2.
【点评】解答此题的关键是明白:长方形中最大的正方形的边长应等于长方形的宽,再据长方形的周长的计算方法即可求解.
10.(2分)把25个棱长为1厘米的小正方体摆放在桌上(如图),露在外面的面的面积是44平方厘米.