今天小编为大家整理了有关于初中数学课标2023版电子版,欢迎大家阅读和下载,希望可以对大家有帮助。
初中数学课标2023版电子版
第一部分前言
数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在(培养人)的理性思维和创新能力方面的不可替代的作用。
一、课程性质
数学课程具有基础性、普及性和发展性。
二、课程基本理念
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
三、课程设计思路
符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。
(一)学段划分
三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)课程目标
义务教育阶段数学课程目标:分为总目标和学段目标
课程目标从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。结果目标使用“了解、理解、掌握、运用”等术语表述,过程目标使用“经历、体验、探索”等术语表述
(三)课程内容
在各学段中,安排了四个部分的课程内容:“数与代数”“图形与几何”“统计与概率”“综合与实践”。“综合与实践”内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。
在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。
运算能力主要是指能够根据法则和运算规律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
推理能力的发展应贯穿在整个数学学习过程中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断一些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。
应用意识有两个方面的含义:
一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;
另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
第二部分课程目标
一、总目标
1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
总目标从以下四个方面具体阐述:
知识技能
经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。
经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。